Reference priors for exponential families with increasing dimension
نویسندگان
چکیده
In this article, we establish the asymptotic normality of the posterior distribution for the natural parameter in an exponential family based on independent and identically distributed data. The mode of convergence is expected Kullback-Leibler distance and the number of parameters p is increasing with the sample size n. Using this, we give an asymptotic expansion of the Shannon mutual information valid when p = pn increases at a sufficiently slow rate. The second term in the asymptotic expansion is the largest term that depends on the prior and can be optimized to give Jeffreys’ prior as the reference prior in the absence of nuisance parameters. In the presence of nuisance parameters, we find an analogous result for each fixed value of the nuisance parameter. In three examples, we determine the rates at which pn can be allowed to increase while still retaining asymptotic normality and the reference prior property. AMS 2000 subject classifications: Primary 62F15; secondary 62C10.
منابع مشابه
Posterior Normality and Reference Priors for Exponential Families with Increasing Dimension
In this article, we study asymptotic normality of the posterior distribution of the natural parameter in an exponential family based on independent and identically distributed (i.i.d.) data, that is, in terms of expected Kullback-Leibler divergence, when the number of parameters p is increasing with the sample size n. We use this to generate an asymptotic expansion of the Shannon mutual informa...
متن کاملIterative Markov Chain Monte Carlo Computation of Reference Priors and Minimax Risk
We present an iterative Markov chain Monte Carlo algorithm for computing reference priors and minimax risk for general parametric families. Our approach uses MCMC techniques based on the Blahut-Arimoto algorithm for computing channel capacity in information theory. We give a statistical analysis of the algorithm, bounding the number of samples required for the stochastic algorithm to closely ap...
متن کاملBayesian approach to cubic natural exponential families
For a natural exponential family (NEF), one can associate in a natural way two standard families of conjugate priors, one on the natural parameter and the other on the mean parameter. These families of conjugate priors have been used to establish some remarkable properties and characterization results of the quadratic NEF’s. In the present paper, we show that for a NEF, we can associate a class...
متن کاملLocation Reparameterization and Default Priors for Statistical Analysis
This paper develops default priors for Bayesian analysis that reproduce familiar frequentist and Bayesian analyses for models that are exponential or location. For the vector parameter case there is an information adjustment that avoids the Bayesian marginalization paradoxes and properly targets the prior on the parameter of interest thus adjusting for any complicating nonlinearity the details ...
متن کاملGibbs Sampling, Exponential Families and Coupling
We give examples of a quantitative analysis of the bivariate Gibbs sampler using coupling arguments. The examples involve standard statistical models – exponential families with conjugate priors or location families with natural priors. Our main approach uses a single eigenfunction (always explicitly available in the examples in question) and stochastic monotonicity.
متن کامل